

000 «ВольтКонтроль»

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ СИСТЕМА СМАРТТЕРМО

3BK.360100.000 P3

ОГЛАВЛЕНИЕ

Система СмартТермо. Описание	3
Установка датчика	4
Конструктивные особенности контроллера	8
Проверка работоспособности датчиков	10
Технические характеристики	11
Техническое обслуживание	17
Приложение 1. Процедура установки датчика STS1011	18
Приложение 2. Меню контроллера STC1010 / STC1015	20
Приложение 3. Описание ПО	29
	39

Система СмартТермо. Описание

Назначение

Система СмартТермо (далее по тексту «система») предназначена для оперативного контроля температуры и выявления недопустимого нагрева элементов распределительных устройств, находящихся под напряжением.

Краткое описание

Система состоит из набора датчиков и контроллера.

Датчики устанавливаются непосредственно на токоведущие части распределительных устройств и производят контактное измерение температуры в месте установки. Результаты измерений в цифровом виде передаются в контроллер по беспроводному радиоканалу. Питание датчика осуществляется от энергии внешнего магнитного поля, возникающего вокруг токоведущего элемента при протекании по нему переменного электрического тока. Для стабильной работы датчика требуется определенная минимальная величина силы тока, зависящая от размеров токоведущего элемента и конфигурации узла крепления датчика.

Контроллер в циклическом режиме выполняет сбор данных с датчиков, анализирует полученные данные в соответствии с заложенным алгоритмом, сигнализирует о перегреве посредством управления выходными реле, светодиодной индикацией и информацией на дисплее, а также осуществляет обмен информацией с АСУ и ПК по интерфейсу RS-485.

Комплектность

Комплект системы включает в себя контроллер STC1010/STC1012/STC1015 (далее по тексту «контроллер») и от 1 до 36 датчиков STS1011 (далее по тексту «датчик»).

Внешний вид контроллеров типа STC1010, STC1010 и STC1015 показан на рисунках 1, 1a, 2.

Рис. 1. Внешний вид контроллера STC1010

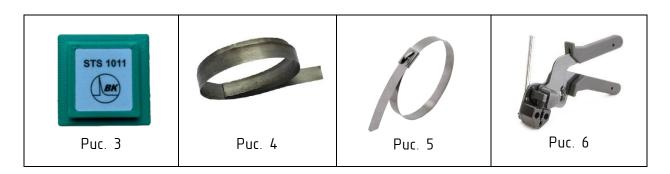
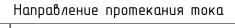


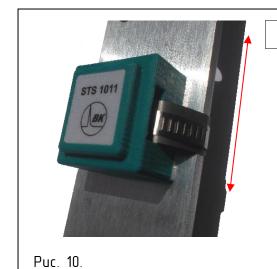
Рис. 1a. Внешний вид контроллера STC1012

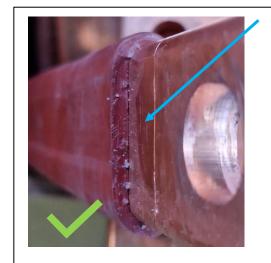
Рис. 2. Внешний вид контроллера STC1015

Комплект датчика с крепежом включает в себя: датчик (рис. 3), ферромагнитную ленту (рис.4), контрольный хомут шариковый типа СКС 304 7.9х400 (рис. 5). Применяемые для монтажа инструменты: 1.Инструмент для монтажа стальных стяжек TG-02 (рис 6).

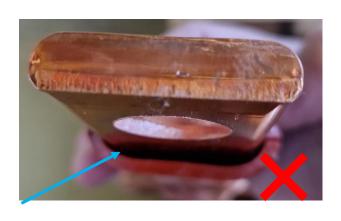
При количестве датчиков в заказе более 1 (одной) штуки ферромагнитная лента может быть поставлена единым отрезом на весь заказ, при этом ее резку на отрезки необходимой длины под имеющиеся датчики осуществляет пользователь с помощью ножниц.


Краткое описание датчика


Датчик выполнен в пластиковом корпусе со сквозным окном для пропускания ферромагнитной ленты-сердечника и контрольного хомута (Рис. 7, 8, 9). Дно корпуса датчика представляет собой алюминиевую пластину, поверхность которой целиком является термочувствительной площадкой и покрыта клеевым слоем с защитной пленкой. Датчик устанавливается непосредственно на токоведущий элемент в той точке, где требуется контроль температуры.


Установка датчика

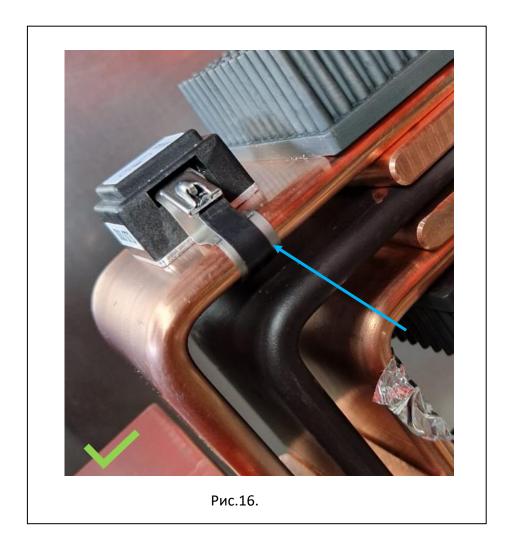
Датчик устанавливается на токоведущий элемент при помощи входящего в комплект поставки специализированного узла крепления. Узел крепления позволяет жестко зафиксировать датчик в необходимой точке на горизонтальных и вертикальных участках контролируемого элемента. Датчик закрепляется на токоведущем элементе сначала посредством приклеивания, затем применяется ферромагнитная лента-сердечник и контрольный хомут. Датчик устанавливается на токоведущий элемент так, чтобы линия направления протекания тока была перпендикулярна плоскости петли ферромагнитной ленты-сердечника (рис. 10). Описание установки датчика для трех исполнений крепежа показаны в Приложении 1.



Допускается установка датчика STS1011 на изолированную шину, при условии, что между шиной и изоляцией отсутствует видимый воздушный зазор. Пример допустимой для установки датчика изоляции показан на рис. 11.Недопустимой — на рис.12. Образец монтажа датчика - на рис.13.

Puc. 11.

Puc. 12.



Puc. 13.

ВНИМАНИЕ!

При УСТАНОВКЕ датчика на ПАКЕТ шин НЕОБХОДИМО и ПРАВИЛЬНО делать виток ферромагнитной ленты и фиксирующего хомута ТОЛЬКО ЧЕРЕЗ ВЕРХНЮЮ ШИНУ, на которой установлен сам датчик!

Возможные варианты установки датчиков на разные типы электроустановок показаны на рисунках 17, 18, 19, 20, 21.

Puc. 17. Puc. 18. Puc. 20. Puc. 19. Puc. 21.

По завершении установки датчики системы готовы к использованию.

Конструктивные особенности контроллера

Контроллеры STC1010 и STC1012 выполнены в металлическом корпусе с кронштейном для установки на DIN-рейку на тыльной стороне. Контроллер STC1015 выполнен в металлическом корпусе под вариант установки в панель (на дверь). На верхней и нижней боковых сторонах располагаются разъемы для подключения цепей внешнего оперативного питания, цепей интерфейса RS-485, цепей исполнительных устройств, а также разъем внешней антенны. На лицевой стороне корпуса располагаются органы индикации и управления: светодиоды, жидкокристаллический дисплей, клавиатура. Контроллер STC1012 не имеет дисплея и органов управления и настройки, настройка и визуализация параметров на STC1012 доступна только через интерфейс RS-485. Гайка подключения цепи заземления расположена: на STC1010, STC1012 - на лицевой стороне корпуса, на STC1015 — на задней стенке корпуса.

Установка и введение в работу контроллера

Контроллер типа STC1010, STC1012 устанавливается на ДИН-рейку, контроллер типа STC1015 устанавливается на дверь или лицевую панель с помощью комплектных держателей и винтов.

Для запуска контроллера в работу необходимо подключить комплектную антенну к соответствующему разъему контроллера, подать оперативное напряжения питания на разъем X1 контроллера. Внешние цепи разъемов X2, X3 подключаются в рамках схем проектной документации для интеграции контроллера в систему АСУ. Назначение разъемов и органов управления и индикации показано на рис. 24.

При подаче оперативного питания контроллер после стартовой самодиагностики запускает основной цикл слушания эфира и получения данных от всех зарегистрированных датчиков и обработки получаемых данных, управления реле, выдачу показаний на дисплей, управления светодиодами, а также ответы на внешние запросы по интерфейсу RS-485.

При условии поставки преднастроенного контроллера дополнительная настройка его при пуске в эксплуатацию не требуется.

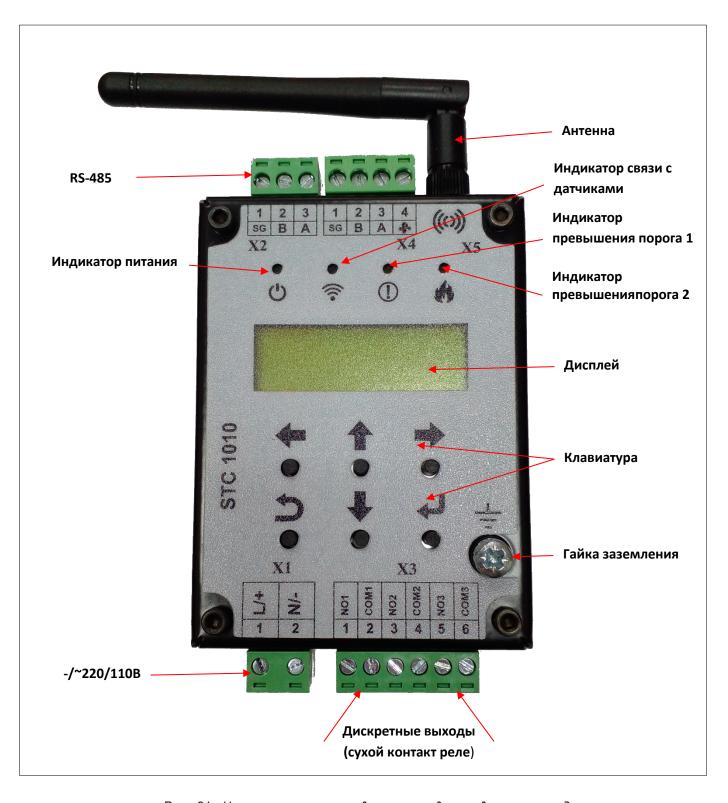
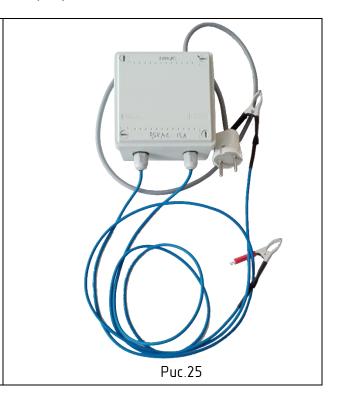



Рис. 24. Назначение разъемов и органов управления и индикации.

Проверка работоспособности датчиков

Для данной проверки необходимо обеспечить протекание минимально необходимого для выхода датчиков в эфир тока по токоведущим частям. Если это невозможно в рамках текущего состояния электроустановки, например, электроустановка обесточена, но к ее токоведущим частям есть доступ, для реализации данной задачи пользователь может быть снабжен тестовым комплектом (ТКСТ-1). Внешний вид ТКСТ-1 показан на рисунке 25.

- 1. Зажимы типа «крокодил» ТКСТ-1 подключаются к тому участку токоведущей части, где установлен датчик.
- 2. Вилка оперативного питания ТКСТ-1 подключается в стандартную розетку оперативного питания 220В.
- 3. ТКСТ-1 обеспечивает протекание переменного тока значением примерно 10...15A по выбранному участку токоведущей части.

При обеспечении токоведущей части достаточным током все датчики должны выйти в эфир и на дисплее контроллера поочередно, со сменой в автоматическом режиме, по три датчика на странице, производится индикация текущих температур всех зарегистрированных в контроллере датчиков.

При условии наличия данных от всех датчиков одного комплекта системы на дисплее контроллера система считается работоспособной и готова к эксплуатации.

Преднастройка контроллера

Если пользователь имеет ненастроенный контроллер, или требуется внести изменения в его настройки, работу с аппаратом настроек контроллера можно выполнить либо через лицевую панель самого контроллера, либо через подключение к контроллеру по интерфейсу RS-485 и специальное ПО SmartThermoSoft.

Базовый элемент настройки контроллера — регистрация датчиков. Каждый датчик имеет свой уникальный 6-значный десятичный идентификатор. С помощью настроек в контроллер записываются данные идентификаторы. После записи контроллер из всех данных эфира выбирает для обработки только те данные, которые принадлежат датчикам с записанными в контроллер идентификаторами.

Дополнительно в контроллер можно записать настройки работы датчиков, реле, настройки связи по интерфейсу RS-485, настройки языка меню контроллера и т.д.

Описание структуры меню и принципов работы пользователя через меню в Приложении 2. Описание конфигурирования настроек системы через программное обеспечение SmartThermoSoft – в Приложении 3.

Технические характеристики

Таблица 2. Основные технические характеристики датчика STS1011

Измерительный диапазон, °С	0+125					
Погрешность измерения, °С	±2					
Источник питания	Внешнее магнитное поле					
Номинальный стартовый ток, A ⁽¹⁾	5					
Относительный стартовый ток, A/cм ⁽²⁾	0,3					
Максимально допустимый длительный	5000					
ток, А	5000					
Способ передачи информации	Радиоканал 2,4 ГГц					
Дальность радиосвязи датчик-контроллер	30					
при прямой видимости, м	50					
Габаритные размеры, ДхШхВ, мм	34x34x22					
Вес, не более, кг	0,1					

- 1. Стартовый ток указан для типового узла крепления датчика с сердечником из **одного двухслойного витка** ферромагнитной ленты сечением 12х0,15 мм, установленного на токоведущей шине 50х6 мм.
- 2. Указан стартовый ток на 1 см длины **одного двухслойного витка** ферромагнитной ленты сечением 12x0,15 мм, например, для длины ленты 20 см стартовый ток составит 0,3 x 20 = 6A.

Технические характеристики контроллера STC 1010, STC1012, STC1015

Таблица 3. Условия эксплуатации

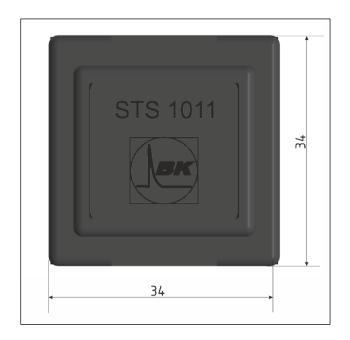
Nº	Наименование параметра	Значение
1	Рабочий диапазон температур, °С	-40 + 55
2	Влажность при +25°C, %, не более	98
3	Атмосферное давление, мм. рт. ст	550 800
4	Высота над уровнем моря, м, не более	2000
5	Климатическое исполнение по ГОСТ 15150-69	УХЛ 3.1

Ταδημμα 4. Πυπακυε

Nº	Наименование параметра	Значение
1	Род тока	Постоянный, переменный, выпрямленный
2	Номинальное напряжение питания, В	110 / 220
3	Диапазон допустимого входного напряжения, В	~ 70-276 =90-370
4	Номинальная частота переменного тока питающей сети, Гц	50/60
5	Мощность потребления от цепи питания, Вт, не более	3
6	Рекомендуемый автоматический выключатель в цепи питания	Характеристика С, 1 А

Таблица 5. Дискретные выходы

Nº	Наименование параметра	Значение
1	Количество	3
2	Тип выхода	Электромеханическое реле
3	Диапазон коммутируемых напряжений переменного и постоянного тока, В	5 - 276
4	Коммутируемый ток (переменный при напряжении 220В, постоянный при напряжении 24В, действие на замыкание/размыкание), А, не более	5
5	Коммутируемый постоянный ток (постоянный при напряжении 220В, действие на размыкание), А, не более	0,1
6	Механический ресурс, коммутаций, не менее	1 000 000


Таблица 6.Конструктивные параметры

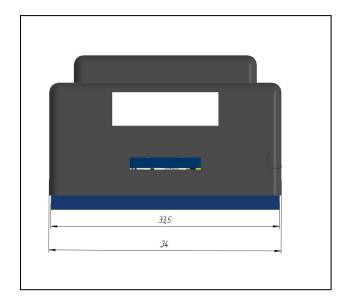

Nº	Наименование параметра	Значение
1	Габаритные размеры (с внешними частями разъемов), ШхВхГ, мм	77x118x50
2	Масса, кг	0,4
3	Степень защиты для корпуса ГОСТ 14254-96, не ниже I	IP20

Таблица 7. Интерфейсы

Nº	Наименование параметра	Значение
1	Количество интерфейсов	2
2	Тип интерфейса	X2 - RS-485 с гальваноразвязкой, X4 – без гальваноразвязки - резерв
3	Поддерживаемые протоколы	Modbus RTU

Рис. 26. Габаритные и присоединительные размеры датчика STS1011

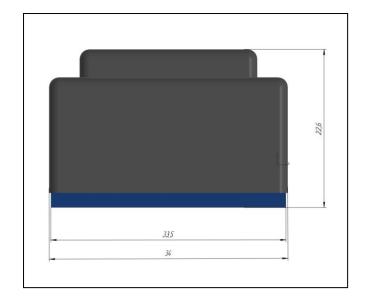
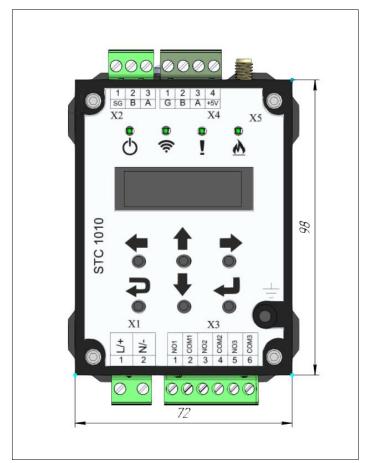



Рис. 27. Габаритные и присоединительные размеры контроллера STC1010

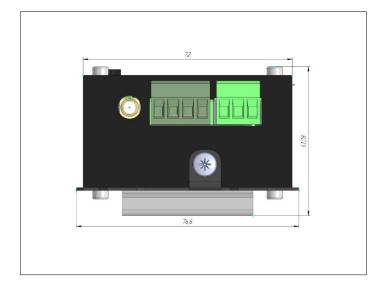
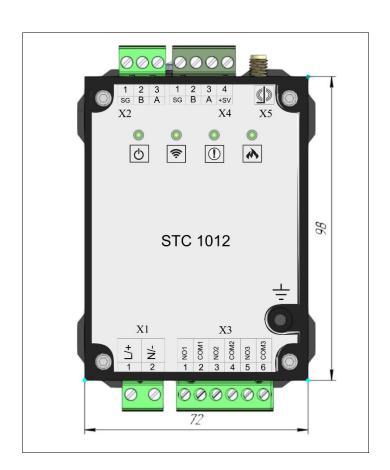




Рис. 27a. Габаритные и присоединительные размеры контроллера STC1012

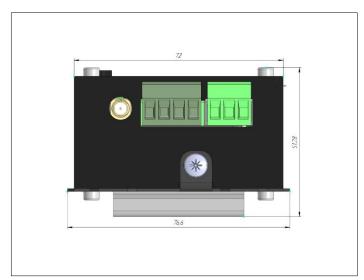
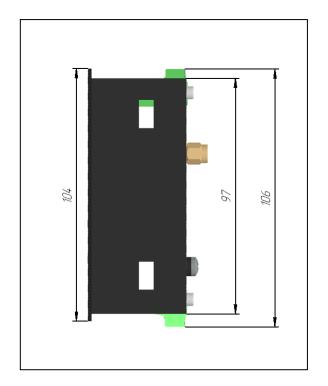
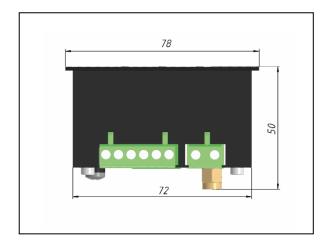




Рис. 28. Габаритные и присоединительные размеры контроллера STC1015

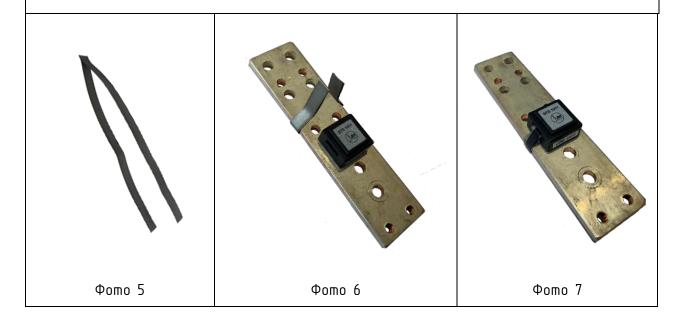
Техническое обслуживание

Система не нуждается в техническом обслуживании.

Но рекомендуется делать визуальный осмотр установленных датчиков во время периодического обслуживания силового оборудования электроустановки, на предмет целостности, отсутствия видимых повреждений.

Устранение неисправностей

Таблица 8. Возможные неисправности и методы их устранения


Описание неисправности	Способ устранения
Отсутствует индикация напряжения питания	Проверьте наличие и значение напряжения
и/или дисплея при поданном оперативном	питания на разъеме X1
напряжении на разъем Х1	Обратитесь в сервисную службу
	производителя
Не удается связаться с контроллером по	Проверьте правильность подключения
интерфейсу RS-485	кабеля связи
	Зайдите в меню контроллера (или
	отключите и включите питание
	контроллера, при перезагрузке высветится
	экран текущих настроек связи), проверьте
	соответствие настроек связи,
	устанавливаемых на ПК/мастере,
	настройкам связи контроллера
	Обратитесь в сервисную службу
	производителя
Отсутствует связь датчика с контроллером	Убедитесь в правильной установке данного
(статус датчика «НЕ ОПРЕДЕЛЕН»)	датчика согласно инструкциям
	Убедитесь в наличии тока на токоведущей
	части в зоне установки датчика
	Убедитесь в соответствии идентификатора
	датчика (идентификатор нанесен на
	боковой стенке датчика) и наличию
	данного идентификатора на
	соответствующем канале контроллера
	Возможно, между датчиком и
	контроллером слишком высокий уровень
	препятствий для эфирного сигнала
	Датчик необходимо заменить

Приложение 1. Процедура установки датчика STS1011

1. Приготовить датчик (фото 1), отрезать ленту-сердечник (фото 2), длина отреза L = (3*W + 2*H) * 2, где W—ширина шины, H—высота шины, приготовить контрольный хомут типа СКС 304 7.9х400 (фото 3), убрать защитную пленку со дна датчика и приклеить датчик к поверхности, сильно прижав его на несколько секунд (фото 4).

2. Сложить отрез ленты пополам, сдавив и сделав плоским сгиб (фото 5), обогнуть лентой токоведущую шину (фото 6), ввести края ленты в окна датчика (фото 7), для нормальной укладки ленты желательно сформовать «ступеньку», как показано на фото 7.

3. Пропустить контрольный хомут через окно датчика (фото 8), затянуть хомут вручную (фото 9), затянуть хомут до упора с помощью инструмента TG-02 (фото 10), отрезать остаток хомута с помощью инструмента TG-02 (фото 11).

Фото 8

Фото 9

Фото 10

Фото 12

Фото 11

Приложение 2. Меню контроллераSTC1010 / STC1015

При включении питания контроллера отображается заставка в течение 2 сек

С	М	Α	Р	T	-	T	Е	Р	М	0	
V	2		0								

Далее отображается экран текущих настроек связи канала RS-485 в течение2 сек

Α	2	4	7				К	1	2	0
1	1	5	2	0	0			Н	Е	Т

Адрес Канал

Скорость обмена Четность

Далее происходит переход в Основной экран.

Основной экран

Формат отображения:

Д	Х	Х	Д	Х	Х	Д	Х	Х	
Т	Т	Т	Т	Т	Т	Т	Т	Т	

ДХХ – порядковый номер датчика (Д01...Д36)

ТТТ – текущая температура датчика в градусах Цельсия

Пример

•									
Д	0	1	Д	0	2	Д	0	4	
	4	5		2	7	1	2	0	

Сценарии работы основного экрана

1. БАЗОВЫЙ (нет превышения температурных уставок).

По кольцу отображаются показания зарегистрированных датчиков (датчиков, у которых серийный номер не равен 0).

Переход к следующей тройке датчиков происходит через 3 сек.

Если датчик зарегистрирован, но по какой-либо причине не в эфире, вместо температуры отображаются символы *** или Err.

Остановка автопереключения показаний и последующий ручной выбор - кнопками↑, ↓. Возврат в автоматический режим через 30 сек бездействия пользователя.

2. ПЕРЕГРЕВ (превышение уставки Порог 1).

Базовый сценарий с одним дополнением. Если в текущей тройке появились превышающие показания, отображается надпись ПЕРЕГРЕВ на 2 сек и перечисляются перегретые датчики из тройки. Пример:

		П	E	Р	E	Γ	Р	Е	В	
Д	0	1		Д	0	2				

Если в этот момент будет нажата кнопка **Enter**, осуществляется переход к отображению только перегретых датчиков.

Остановка автопереключения показаний и последующий ручной выбор кнопками ↑, ↓. Возврат в автоматический режим через 30 сек бездействия.

Возврат к отображению показаний *всех* датчиков кнопкой **ESC**, при отсутствии превышающих показаний или через 60 сек бездействия.

3. АВАРИЯ (превышение уставки Порог 2).

Отображается надпись АВАРИЯ и переход к отображению только превышающих показаний датчиков. Пример:

Α	В	Α	Р	И	Я		Д	0	8	
							1	4	5	

Переход к следующему датчику через 3 сек(?).

Остановка автопереключения показаний и последующий ручной выбор кнопками 🕂 , 🗸.

Возврат в автоматический режим через 30 сек бездействия.

Возврат к отображению показаний всех датчиков при отсутствии превышающих показаний.

Экран Состояние датчиков

Переход из основного экрана в экран «Состояние датчиков» кнопкой Enter.

Экран служит для отображения подробной информации по каждому зарегистрированному датчику (датчику, у которого серийный номер не равен 0).

Формат отображения:

Д	Х	Х	S	N	Х	Х	Х	Х	Х	Х
Т	Т	Т	S	S	S	S	S	S	S	S

ДХХ – порядковый номер датчика, выбирается кнопками \uparrow , \downarrow .

SNXXXXXX – серийный номер датчика в десятичном формате (000001...999999)

ТТТ – текущая температура в градусах Цельсия

SSSSSSS - ctatyc

Статус может принимать следующие значения: В ЭФИРЕ, НЕТПИТ, НЕИСПР, НЕОПРЕД.

По кнопкам \leftarrow , →отображать по кольцу Сер номер →Порог1 → Порог2 →Группа → Сер номер ...

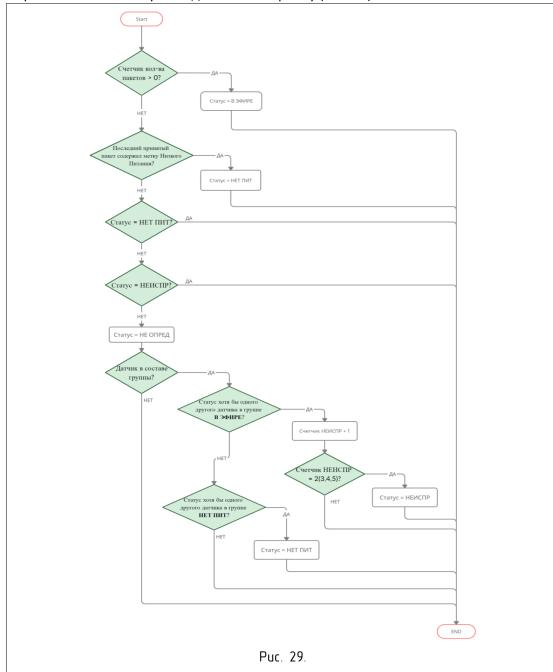
Порог1

	•										
	Д	Х	Х	П	1		Х	Х	Χ		
	Т	Т	T	S	S	S	S	S	S	S	S
Пс	рог2										
	Д	Х	Х	П	2		Х	Х	Χ		
	Т	Т	T	S	S	S	S	S	S	S	S
Гр	уппа										
	Д	Х	X	Γ	Х	Χ					
	Т	Т	T	S	S	S	S	S	S	S	S

Отображение на экране начинается с первого датчика текущей тройки.

Например, текущая тройка датчиков

	Д	0	2	Д	0	5		Д	0	7	
	1	0	5	1	0	7			2	5	
Эн	ран Сост	ояние да	атчиков								
	Д	0	2	S	N	Χ	Х	Χ	Χ	Х	Χ
	1	0	5	S	S	S	S	S	S	S	S


Выход из экрана кнопкой **ESC**.

Формирование статуса датчика

В бесконечном цикле запущен таймер, отсчитывающий интервалы в 1 мин.

В течение этого интервала ведется подсчет количества принятых пакетов от каждого датчика.

В момент перезагрузки таймера (когда закончился очередной минутный интервал) производится сравнение количества принятых пакетов с нулями далее по алгоритму (Рис. 29):

Переход из основного экрана в меню удержанием кнопки **Enter**в течение 3 сек.

Выход из меню в основной экран кнопкой ESC.

Редактирование числовых параметров осуществляется поразрядно.

Выбор разряда кнопками \leftarrow , \rightarrow , изменение разряда кнопками \uparrow , \downarrow , сохранение кнопкой **Enter**, отмена кнопкой **ESC**. Выбранный разряд должен мигать.

При нажатии кнопки 👉 от самого старшего разряда переходить к самому младшему.

При нажатии кнопки →от самого младшего разряда переходить к самому старшему.

При нажатии кнопки ↑от 9 переходить к 0.

При нажатии кнопки ↓от 0 переходить к 9.

Дерево меню

```
Меню
      Настройки
            Датчики
                  Датчик 1
                        Сер номер
                        Порог 1
                        Порог 2
                        Гистерезис
                        Привязка к реле
                        Группа
Датчик 2
                  Датчик 36
            Реле
                  Реле 1
                        Режим
                        Задержка В
                        Задержка О
                        Логика
                  Реле 2
                  Реле 3
            Связь
                  Адрес
                  Скорость
                  Паритет
                  Стоп бит
                  Канал
                  Сброс
            Локализация
                  Язык
      Инфо
            Версия
            Контакты
```

Меню >Настройки> Датчики >Датчик XX

Пункт меню «Датчик XX» (XX = 1...36) содержит редактируемые параметры Cep номер, Пopor 1, Пopor 2, $\Gamma ucmepesuc$, Пpuвязка, $\Gamma pynna$.

Параметр Сер номер

С	E	Р		Н	0	М	Е	Р		
Χ	Χ	Χ	Χ	Χ	Χ					

ХХХХХХ – серийный номер датчика в десятичном формате (диапазон 000001...999999).

Серийный номер - уникальный 24-битный номер, занесенный в память датчика на производстве.

Передается в каждом пакете, см. документ «Структура пакета датчика». Серийный номер необходим при программной фильтрации входящих пакетов.

Параметр Порог 1

П	0	Р	0	Γ	1				
Γ	р	а	Д		С		Χ	Χ	Χ

XXX – температурный порог в градусах Цельсия (диапазон 0...250).

Если текущая температура датчика превышает значение «Порог 1» выдается сигнал на реле.

Параметр Порог 2

П	0	Р	0	Γ	2				
Г	р	а	Д		С		Χ	Χ	Χ

XXX – температурный порог в градусах Цельсия (диапазон 0...250).

Если текущая температура датчика превышает значение «Порог 2» выдается сигнал на реле.

Параметр Гистерезис

· ·	•										
Γ	И	С	Т	E	Р	Е	3	И	С		
Г	р	a	Д		С					Χ	Х

ХХ – гистерезис в градусах Цельсия (диапазон 1...30).

Если текущая температура датчика превышает значение порога, порог уменьшается на величину гистерезиса. При снижении текущей температуры ниже значения порога с учетом гистерезиса снимается сигнал на реле, порог возвращается к номинальному значению.

Параметр Привязка

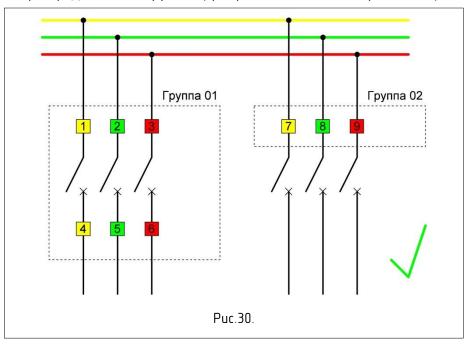
П	Р	И	В	Я	3	К	Α		
S	S	S							

SSS - значение (ДА, НЕТ).

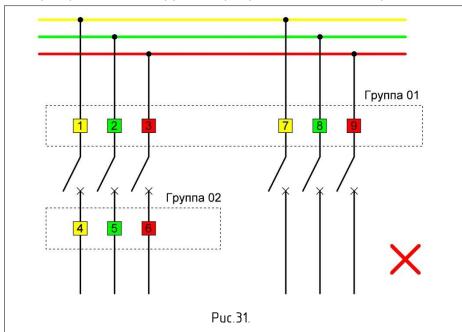
Значение «ДА» подключает датчик ко всем реле и реле должны реагировать на сигналы датчика.

Значение «НЕТ» отключает датчик от всех реле. Реле не реагируют на сигналы датчика.

Параметр Группа


Γ	Р	У	П	П	Α			
Х	Х							

ХХ-значение группы (диапазон 0...18).


Датчики, установленные на участке токоведущих шин, по которому протекает один и тот же электрический ток, можно объединить в группу. Группирование позволяет косвенным методом определить неисправный датчик по сигналам от остальных датчиков группы.

Значение **0** отключает группирование.

Пример корректного распределения по группам (трехфазная система электропитания)

Пример некорректного распределения по группам (трехфазная система электропитания)

Меню >Настройки> Реле >Реле Х

Пункт меню «Реле X» (X = 1...3) содержит редактируемые параметры Режим, Задержка B, Задержка O, Логика.

Параметр Режим

Р	Е	Ж	И	М							
S	S	S	S	S	S	S	S	S	S	S	S

SSSSSSSSS – наименование (Нет, Испр. связи, Порог 1, Порог 2)

Нет - реле не используется.

Испр. связи - сигнализация исправности канала связи. Реле срабатывает, если все зарегистрированные датчики имеют статус «В ЭФИРЕ».

Порог 1 - Температурный порог 1. Реле реагирует на сигналы датчиков, возникающие в момент превышения уставки Порог 1.

Порог 2 - Температурный порог 2. Реле реагирует на сигналы датчиков, возникающие в момент превышения уставки Порог 2.

Параметр Задержка В

3	Α	Д	E	Р	Ж	К	Α	В		
С	е	К						Χ	Χ	Χ

XXX – значение задержки в секундах (диапазон 0...255)

По истечении задержки реле переходит в активное состояние, при условии присутствия сигнала.

Параметр Задержка О

3	Α	Д	E	Р	Ж	К	Α	0		
С	е	К						Χ	Χ	Χ

XXX – значение задержки в секундах (диапазон 0...255)

По истечению задержки реле переходит в пассивное состояние, при условии отсутствия сигнала.

Параметр Логика

Л	0	Γ	И	К	Α			
S	S	S						

SSS – наименование (Поз, Нег)

Если значение «Поз», контакт NO реле замыкается в активном состоянии и размыкается в пассивном состоянии.

Если значение «Нег», контакт NO реле размыкается в активном состоянии и замыкается в пассивном состоянии.

Меню >Настройки> Связь

Пункт меню «Связь» содержит редактируемые параметры *Адрес, Скорость, Паритет, Стоп.бит, Канал* и команду *Сброс*.

Параметр Адрес

Α	Д	Р	E	С				
Χ	Χ	Χ						

XXX – адрес контроллера в сети RS-485 MODBUSRTU (диапазон 1...247)

Параметр Скорость

С	К	0	Р	0	С	Т	Ь				
Б	И	T	/	С		Χ	Χ	Χ	Χ	Χ	Χ

ХХХХХХ – скорость обмена (9600, 19200, 38400, 57600, 115200)

Параметр Паритет

Ī	П	Α	Р	И	Т	F	Т			
	S	S	S	S	S	_				

SSSSS – паритет (HET, ЧЕТ, НЕЧЕТ)

Параметр Стоп.бит

С	Т	0	П	Б	И	Т		
Х								

X – кол-во стоп бит (1, 2)

Параметр Канал

К	Α	Н	Α	Л				
X	Х	X						

XXX – номер РЧ канала связи с датчиками (1...126)

Команда Сброс

	'							
С	Б	Р	0	С	?			
Д	Α							

Будет произведен сброс сетевых параметров к заводским значениям.

Меню >Настройки>Локализация

Пункт меню «Локализация» содержит редактируемый параметр Язык.

Параметр Язык

Я	3	Ы	К				
S	S	S	S				

SSSS – наименование языка интерфейса (Рус, Англ)

Меню >Инфо

Пункт меню «Инфо» содержит параметры для просмотра *Версия, Контакты*.

Версия

В	Е	Р	С	И	Я			
Χ	Χ	Χ		Χ	Χ			

XXX.XX – версия программного обеспечения контроллера.

Контакты

К	0	Н	Т	Α	К	Т	Ы				
Т	Х	Х	Х	Χ	Х	Х	Χ	X	Χ	Χ	Х

TXXXXXXXXX - контакты тех. поддержки

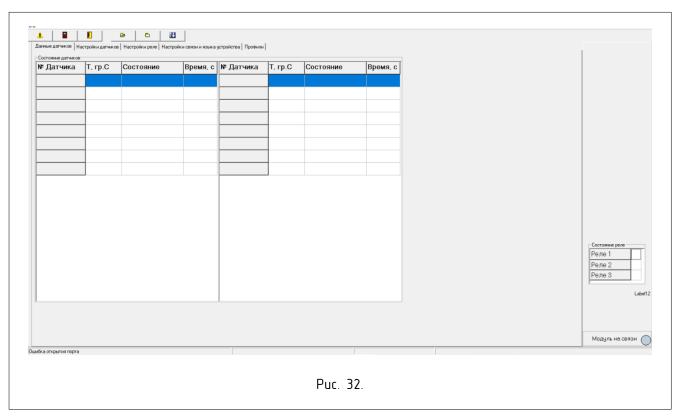
Приложение 3. Описание ПО Основные положения

Программное обеспечение SmartThermoSoft(далее по тексту ПО) предназначено для настройки, конфигурирования и мониторинга работы системы СмартТермо.

ПО создано для работы во всех версиях операционных систем (далее по тексту ОС) Windowsu не требует установки.

ПО использует для связи и обмена данными с системой СмартТермо последовательный порт персонального компьютера (далее по тексту ПК) (физический либо виртуальный).

Если пользователь использует USB-адаптер или Ethernet-адаптер интерфейса RS-485 (как например, Овен AC4, MoxaUPort1150, MoxaNPort5230), необходимо перед началом работы с ПО установить на ОС ПК корректные драйверы соответствующих адаптеров и удостовериться, что при подключении адаптера к ПК в Диспетчере устройств ОС появляется последовательный порт СОМ. Необходимо при этом запомнить номер СОМ-порта.

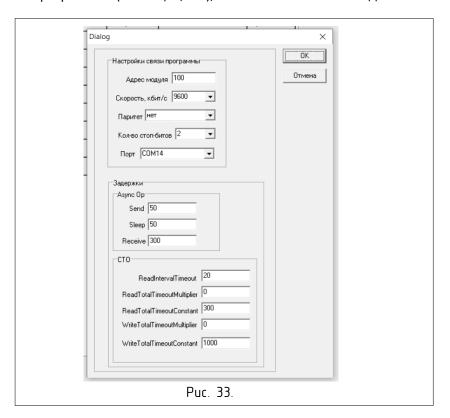

ПО представляет собой архивный файл, который при распаковке образует папку, в папке находится исполняемый файл ПО VKDSoft.exe и вспомогательный настроечные файлы.

Для работы с системой СмартТермо необходимо подключить адаптер RS-485 к контроллеру STC10XX и подать на контроллер питание. Адаптер также должен быть подключен к ПК.

Запуск ПО производится по двойному щелчку мыши на файл VKDSoft.exe.

Начало работы

При старте ПО имеет следующий вид:


На данном рисунке показан вид главного окна ПО в состоянии отсутствия СОМ-порта ПК для связи с контроллером STC по причине того, что в настройках ПО установлен неверный номер СОМ-порта. Необходимо посмотреть в Диспетчере устройств верный текущий номер СОМ-порта, нажать на кнопку «Настройки связи программы» (см. таблицу 9) и сменить номер СОМ-порта, при смене номера СОМ-порта

рекомендуется проверить остальные настройки связи на предмет соответствия их настройкам связи контроллера, при необходимости сменить на верные.

Таблица 9. Назначения кнопок Панели управления ПО.

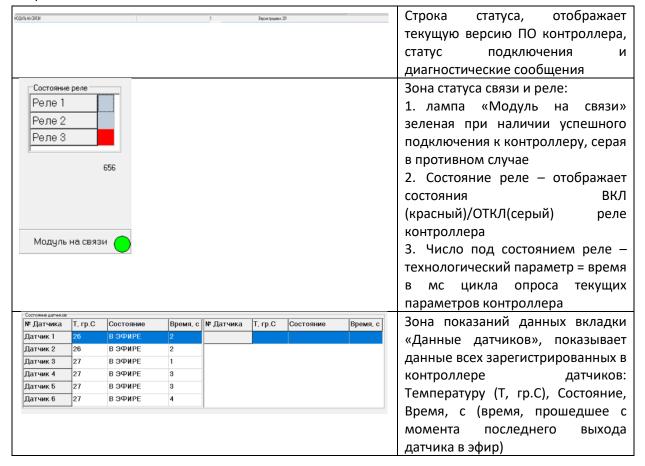
1	<u> </u>	Кнопка «Настройки связи программы», вызывает диалоговое окно настроек и параметров связи ПО
2		Кнопка «Прервать связь» - позволяет удалить канал связи и прекратить обмен, может быть полезна для поочередной работы данного ПО и стороннего ПО.
3		Кнопка «Восстановить связь» - позволяет восстановить канал связи и продолжить работу.
4		Кнопка «Загрузить настройки из файла профиля» - позволяет загрузить в таблицы данных ПО предварительно сохраненные настройки для контроллера STC в указанном файле профиля, с помощью стандартного диалога открытия файла.
5		Кнопка «Сохранить текущие настройки пользователя в файл профиля» - позволяет все данные из таблиц пользователя сохранить в файл профиля для будущего использования, с помощью стандартного диалога сохранения в файл.
6		Кнопка «Загрузить текущий профиль из таблиц в контроллер» - позволяет загрузить в контроллер STC все данные настроек из таблиц пользователя

Кнопка «Настройки связи программы» (Таблица9, п.1), по нажатию появляется диалоговое окно:

В данном окне необходимо установить настройки порта связи для успешного присоединения к контроллеру. Настройки параметров связи контроллера при необходимости можно посмотреть на дисплее контроллера при старте контроллера либо через его меню. В окне программы необходимо выставить такие же

параметры. Параметр «Порт» нужно выбрать из списка и установить такой номер, который закреплен в Диспетчере устройств ОС за адаптером RS-485, через который осуществляется подключение к контроллеру. Зона «Задержки», параметры описаны в таблице 10.

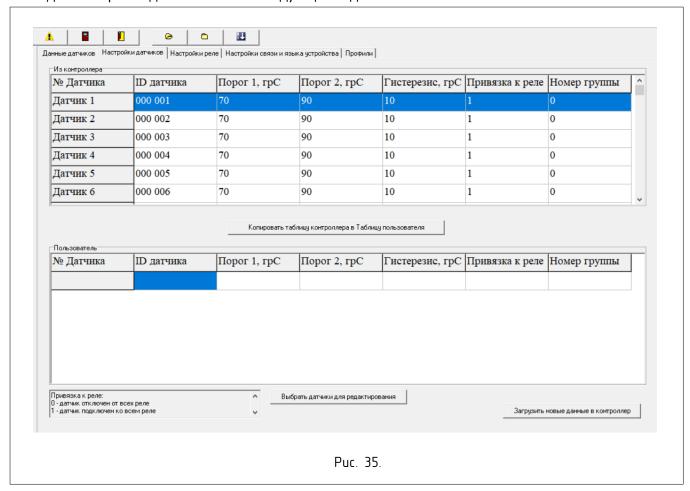
Ταδλυμα 10.


Nº	Имя параметра	Описание параметра
1	Send	Время ожидания результата при посылке пакета в
		контроллер
2	Sleep	Ожидание после приема очередного пакета из
		контроллера до начала посылки следующего пакета в
		контроллер
3	Receive	Время ожидания результата при приеме пакета из
		контроллера
4	ReadIntervalTimeout	Параметр канала передачи – максимальное время
		тишины между байтами в процессе приема пакета,
		если тишина превосходит данное значение, ОС
		считает принятый байт последним в пакете
5	ReadTotalTimeoutMultiplier	Параметры формулы расчета таймаута приема пакета:
6	ReadTotalTimeoutConstant	Таймаут = ReadTotalTimeoutMultiplier * n (байт в
		пакете) + ReadTotalTimeoutConstant
7	WriteTotalTimeoutMultiplier	Параметры формулы расчета таймаута посылки
8	WriteTotalTimeoutConstant	пакета: Таймаут = WriteTotalTimeoutMultiplier * n (байт
		в пакете) + WriteTotalTimeoutConstant

При успешном подключении к контроллеру внешний вид главного окна ПО на основной вкладке имеет следующий вид:

Основные элементы главного окна показаны в таблице 11.

Ταδλυμα 11.


ПО работает по следующему принципу:

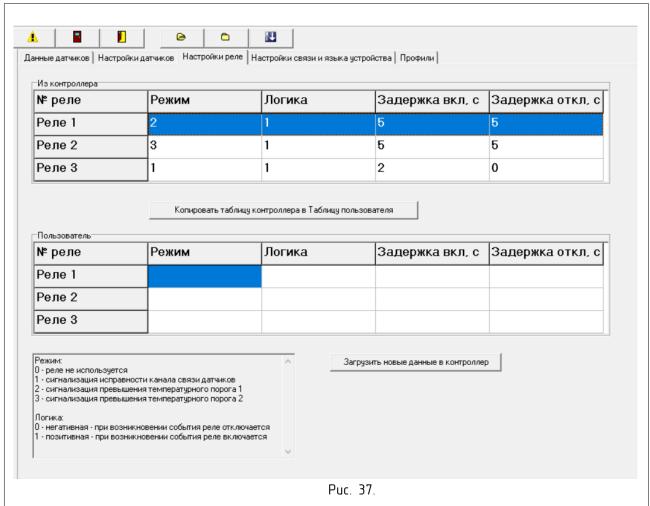
- 1. ПО бесконечно производит попытки подключения к контроллеру по указанным в настройках параметрам.
- 2. При успешном подключении ПО постоянно читает из контроллера те данные, которые необходимы только для заполнения таблиц и полей текущей открытой вкладке главного окна.
- 3. Поля «Из контроллера» на вкладках настроек только для чтения, ПО постоянно обновляет данные в них, читая из контроллера.
- 4. Для загрузки новых настроек в контроллер пользователь предварительно заполняет таблицы и поля «Пользователя», затем загружает их в контроллер.

Назначения вкладок главного окна ПО

Вкладка «Настройки датчиков»

Вкладка «Настройки датчиков» имеет следующий вид:

- 1. Таблица «Из контроллера» только для чтения, пользователь имеет возможность заполнять и редактировать таблицу «Пользователь» и далее «Загружать новые данные в контроллер».
- 2. Заполнение таблицы можно сделать тремя способами:
 - I. С помощью кнопки «Копировать таблицу контроллера в Таблицу пользователя» загрузить все настройки контроллера в таблицу пользователя и далее редактировать.
 - II. С помощью кнопки «Загрузить настройки из файла профиля» (Таблица 1, пункт 4) загрузить в таблицу предварительно сохраненные в файл профиля настройки датчиков.
 - III. Заполнение срок вручную: «Выбрать датчики для редактирования», в появившемся окне выбора (рисунок 28) отметить нужные датчики, по нажатию ОК появятся строки с отмеченными датчиками для заполнения.


Выбор						OK
	□ Датчик 7	□ Датчик 13	□ Датчик 19	□ Датчик 25	□ Датчик 31	Отмена
	□ Датчик 8	□ Датчик 14	□ Датчик 20	□ Датчик 26	□ Датчик 32	OTMENA
Г Датчик 3	□ Датчик 9	□ Датчик 15	□ Датчик 21	□ Датчик 27	□ Датчик 33	
□ Датчик 4	□ Датчик 10	□ Датчик 16	□ Датчик 22	□ Датчик 28	□ Датчик 34	
□ Датчик 5	□ Датчик 11	□ Датчик 17	□ Датчик 23	□ Датчик 29	□ Датчик 35	
□ Датчик 6	□ Датчик 12	□ Датчик 18	□ Датчик 24	□ Датчик 30	□ Датчик 36	
Убрать выбор со все	ех датчиков			Выбра	эть все датчики	
			Puc. 30	 S		

3. Таблица 12. Поля таблицы настроек датчиков.

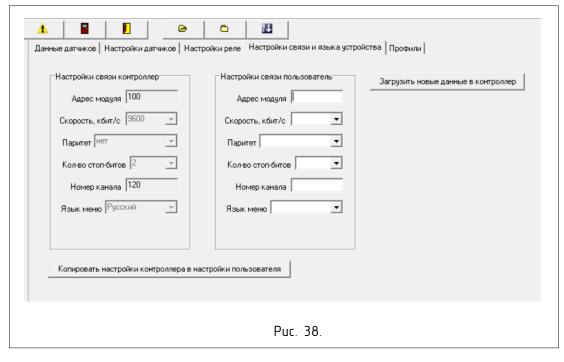
IDдатчика	Уникальный идентификатор датчика, для регистрации новых датчиков в контроллере необходимо любым свободным каналам назначить соответствующие идентификаторы, для удаления датчика из контроллера (сброса регистрации) необходимо значение идентификатора на соответствующем канале установить в ноль.
Порог1, гр.С	Значение первого порога, в гр.С, если температура данного датчика превышает данное значение, производится аварийная индикации на дисплее контроллера, а в случае привязки датчика к реле те реле, в настройках которых выбран режим 2 (сигнализация превышения порога 1) включатся/отключатся (в зависимости от выбранной логики реле в настройках реле)
Порог2, гр.С	Значение второго порога, в гр.С, если температура данного датчика превышает данное значение, производится аварийная индикации на дисплее контроллера, а в случае привязки датчика к реле те реле, в настройках которых выбран режим 3 (сигнализация превышения порога 2) включатся/отключатся (в зависимости от выбранной логики реле в настройках реле)
Гистерезис, гр.С	Значение гистерезиса, для обратного отключения/включения реле. Например, если порог 1 составляет 70 гр.С, а гистерезис составляет 10 гр.С, то (датчик привязан к реле, режим реле 2) реле включится при достижении 70 гр.С, а отключится, то есть сигнализация снимется при $T = 10$ гр.С гистерезис = $T = 10$ гр.С
Привязка к реле	0 – датчик не привязан ни к одному реле, 1 – датчик привязан ко всем реле
Номер	Из датчиков можно сформировать группы с целью понимания
группы	местоположения датчиков, а также для осуществления дополнительной диагностики неисправности датчиков. Принцип групповой работы датчиков описан в Приложении №1 (Описание структуры меню контроллера). Значение 0 (ноль) — отсутствие принадлежности датчика к какой-либо группе

Вкладка «Настройки реле»

Вкладка «Настройки реле» имеет следующий вид:

Вкладка «Настройки реле» организованы по такому же принципу, что и «Настройки датчиков». Заполнить таблицу «Пользователь» для дальнейшего редактирования и загрузки в контроллер можно также тремя способами:

- I. С помощью кнопки «Копировать таблицу контроллера в Таблицу пользователя» загрузить все настройки контроллера в таблицу пользователя и далее редактировать.
- II. С помощью кнопки «Загрузить настройки из файла профиля» (Таблица 1, пункт 4) загрузить в таблицу предварительно сохраненные в файл профиля настройки реле.
- III. Вручную.


Таблица 13. Описание настроек реле

Наименование параметра	Описание параметра
	С помощью данного параметра пользователь
	задает один из следующих режимов работы
	реле:
	0 - реле не используется
Режим	1 - сигнализация исправности канала связи
ГЕЖИМ	датчиков
	2 - сигнализация превышения температурного
	порога 1
	3 - сигнализация превышения температурного
	порога 2
	Пользователь задает тип логики переключения
	реле:
Логика	0 - негативная - при возникновении события
ЛОГИКа	реле отключается
	1 - позитивная - при возникновении события
	реле включается
Задержка включения, с	Задержка включения реле в секундах
Задержка отключения, с	Задержка отключения реле в секундах

Загрузка новых данных настроек реле в контроллер производится по нажатию соответствующей кнопки на вкладке.

Вкладка «Настройки связи и языка устройства»

Внешний вид вкладки следующий:

Вкладка «Настройка связи и языка устройства» организована по похожему принципу, что и остальные вкладки. Зона «Настройки связи контроллер» - только для чтения, в ней постоянно обновляются читаемые с контроллера данные. Новые настройки связи загружаются в контроллер из полей зоны «Настройки связи пользователя» по нажатию кнопки «Загрузить новые данные в контроллер». Заполнить поля «Настройки связи пользователя» можно так же тремя способами:

- I. С помощью кнопки «Копировать настройки контроллера в настройки пользователя» загрузить все настройки контроллера в настройки пользователя и далее редактировать.
- II. С помощью кнопки «Загрузить настройки из файла профиля» (Таблица 1, пункт 4) загрузить в таблицу предварительно сохраненные в файл профиля настройки.
- III. Вручную.

Таблица 14. Описание настроек связи

Наименование параметра	Описание параметра
Адрес модуля	Адрес контроллера в сети RS-485, может принимать значения от 1 до 247
Скорость, кбит/с	Скорость обмена по каналу RS-485, может принимать значения 9600, 19200, 38400, 57600, 115200 кбит/с
Паритет	Контроль паритета, может принимать значения: нет, контроль по четности (чет), контроль по нечетности (нечет)
Кол-во стоп-битов	Количество стоп-битов в байте данных пакета
Номер канала	Номер рабочего радиоканала контроллера, может принимать значения от 1 до 126
Язык меню	Язык меню дисплея контроллера, может принимать значения: английский, русский

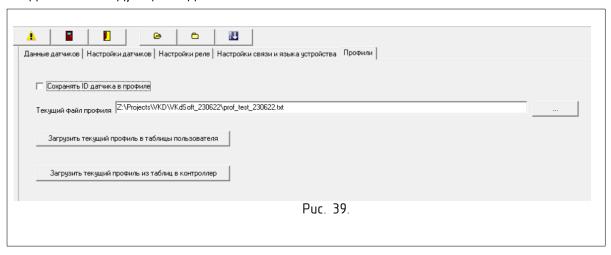
Вкладка «Профили»

Принцип профилей разработан для того, чтобы быстро загрузить в контроллер все необходимые заранее подготовленные настройки. В ряде случаев это оказывается очень полезным и экономит время, когда пользователь работает с большим количеством не преднастроенных контроллеров.

Профиль включает в себя все настройки всех таблиц пользователя всех вкладок: Настройки датчиков, настройки реле и настройки связи и языка.

Профиль хранится в текстовом файле *.txtco структурой INI-файла:

[секция1]


Параметр1=значение

Параметр1=значение

И так далее

При создании файла все данные всех таблиц и полей пользователя собираются в указанном файле. При загрузке из файла также все данные файла распределяются по таблицам и полям пользователя.

Вкладка имеет следующий вид:

На данной вкладке указан последний текущий файл профиля с полным путем к нему. Пользователь может сменить текущий файл на любой другой с помощью кнопки выбора файла «...», при этом открывается стандартный диалог выбора файла. Если пользователь выбрал файл и нажал ОК, файл становится последним текущим. Ниже поля с именем файла находятся кнопки загрузки данных профиля в таблицы пользователя и загрузки данных профиля из таблиц в контроллер.

Данные кнопки в какой-то мере дублируют кнопки Панели инструментов Таблицы 9, пунктов 4, 6. Различие в том, что здесь по нажатии кнопок ПО напрямую, без диалоговых окон, загружает все таблицы пользователя из указанного в поле «Текущий файл профиля» файла.

Поле «Сохранять IDдатчика в профиле» - при отмеченной галочке, в процессе создания файла профиля в файл профиля записываются вместе с остальными настройками также и все идентификаторы датчиков. При снятой галочке идентификаторы датчиков не записываются в настройки. При загрузке настроек в таблицы пользователя принцип такой же.

Приложение 4. Таблица регистров Modbus контроллераSTC1010/STC1012/STC1015

Таблица регистров Modbus версия FW 2.0

Формат данных: UINT16 – беззнаковое целое 16 бит, UINT32 – беззнаковое целое 32 бит

Адрес	Формат	Функции	Описание
0x0000	UINT16	03h,06h,10h	Адрес прибора в сети [1-247]
0x0001	UINT16	03h,06h,10h	Скорость обмена 0– 9600, 1– 19200, 2– 38400, 3– 57600, 4– 115200
0x0002	UINT16	03h,06h,10h	Паритет О-нет, 1-чет (even), 2-нечет (odd) Примечание. Если используется проверка чет/нечет, то допускается только один стоп-бит!
0x0003	UINT16	03h,06h,10h	Кол-во стоп-бит 1 — один стоп-бит 2 — два стоп-бита
0x0004	UINT16	03h,06h,10h	Номер канала связи[1-126]
0x0005		02h 06h 10h	Danasa
 0x000f		03h,06h,10h	Резерв
0x0010	LUNT22	03h,06h,10h	Настройки датчика 1 Серийный номер, биты 824
0x0011	UINT32	03h,06h,10h	Настройки датчика 1 Серийный номер, биты 07
0x0012	UINT16	03h,06h,10h	Настройки датчика 1 Температурный порог 1 в градусах Цельсия [0-150]
0x0013	UINT16	03h,06h,10h	Настройки датчика 1 Температурный порог 2 в градусах Цельсия [0-150]
0x0014	UINT16	03h,06h,10h	Настройки датчика 1 Гистерезис в градусах Цельсия [130]
0x0015	UINT16	03h,06h,10h	Настройки датчика 1 Привязка к реле О-датчик отключен от всех реле, 1-датчик подключен ко всем реле
0x0016	UINT16	03h,06h,10h	Настройки датчика 1 Номер группы, в составе которой находится датчик [018]
0x0017 0x001f		03h,06h,10h	Резерв
0x0020 0x0026	UINT16/ UINT32	03h,06h,10h	Настройки датчика 2
0x0027 0x002f		03h,06h,10h	Резерв
0x0030 0x0036	UINT16/ UINT32	03h,06h,10h	Настройки датчика 3
0x0037 0x003f		03h,06h,10h	Резерв
0x0040 0x0046	UINT16/ UINT32	03h,06h,10h	Настройки датчика 4
0x0047 0x004f		03h,06h,10h	Резерв

0x0050	UINT16/		
 0x0056	UINT32	03h,06h,10h	Настройки датчика 5
0x0057 		03h,06h,10h	Резерв
0x005f 0x0060	LUNT1C/		
 0x0066	UINT16/ UINT32	03h,06h,10h	Настройки датчика 6
0x0067 0x006f		03h,06h,10h	Резерв
0x0070 0x0076	UINT16/ UINT32	03h,06h,10h	Настройки датчика 7
0x0077 0x007f		03h,06h,10h	Резерв
0x0080 0x0086	UINT16/ UINT32	03h,06h,10h	Настройки датчика 8
0x0087 0x008f		03h,06h,10h	Резерв
0x0090 0x0096	UINT16/ UINT32	03h,06h,10h	Настройки датчика 9
0x0097 0x009f		03h,06h,10h	Резерв
0x00a0 0x00a6	UINT16/ UINT32	03h,06h,10h	Настройки датчика 10
0x00a7 0x00af		03h,06h,10h	Резерв
0x00b0 0x00b6	UINT16/ UINT32	03h,06h,10h	Настройки датчика 11
0x00b7 0x00bf		03h,06h,10h	Резерв
0x00c0 0x00c6	UINT16/ UINT32	03h,06h,10h	Настройки датчика 12
0x00c7 0x00cf		03h,06h,10h	Резерв
0x00d0 0x00d6	UINT16/ UINT32	03h,06h,10h	Настройки датчика 13
0x00d7 0x00df		03h,06h,10h	Резерв
0x00e0 0x00e6	UINT16/ UINT32	03h,06h,10h	Настройки датчика 14
0x00e7 0x00ef		03h,06h,10h	Резерв
0x00f0 0x00f6	UINT16/ UINT32	03h,06h,10h	Настройки датчика 15
0x00f7 0x00ff		03h,06h,10h	Резерв

0x0100	UINT16/		
 0x0106	UINT32	03h,06h,10h	Настройки датчика 16
0x0107 		03h,06h,10h	Резерв
0x010f 0x0110		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
 0x0116	UINT16/ UINT32	03h,06h,10h	Настройки датчика 17
0x0117		02h 06h 10h	Danasa
0x011f		03h,06h,10h	Резерв
0x0120 	UINT16/ UINT32	03h,06h,10h	Настройки датчика 18
0x0126 0x0127			
 0x012f		03h,06h,10h	Резерв
0x0130 	UINT16/	03h,06h,10h	Настройки датчика 19
0x0136 0x0137	UINT32		
 0x013f		03h,06h,10h	Резерв
0x0131	UINT16/		
 0x0146	UINT32	03h,06h,10h	Настройки датчика 20
0x0147 		03h,06h,10h	Резерв
0x014f 0x0150			
 0x0156	UINT16/ UINT32	03h,06h,10h	Настройки датчика 21
0x0157 0x015f		03h,06h,10h	Резерв
0x0160 0x0166	UINT16/ UINT32	03h,06h,10h	Настройки датчика 22
0x0167 0x016f		03h,06h,10h	Резерв
0x0170 0x0176	UINT16/ UINT32	03h,06h,10h	Настройки датчика 23
0x0170			
 0x017f		03h,06h,10h	Резерв
0x0180 0x0186	UINT16/ UINT32	03h,06h,10h	Настройки датчика 24
0x0187 		03h,06h,10h	Резерв
0x018f 0x0190	UINT16/		
 0x0196	UINT32	03h,06h,10h	Настройки датчика 25
0x0197 0x019f		03h,06h,10h	Резерв
0x01a0 	UINT16/ UINT32	03h,06h,10h	Настройки датчика 26
0x01a6 0x01a7	UINT32		
 0x01af		03h,06h,10h	Резерв
OYOTAI			

0x01b0	111517467		
 0x01b6	UINT16/ UINT32	03h,06h,10h	Настройки датчика 27
0x01b7 		03h,06h,10h	Резерв
0x01bf 0x01c0	UINT16/	021-061-401-	
0x01c6 0x01c7	UINT32	03h,06h,10h	Настройки датчика 28
0x01c7 0x01cf		03h,06h,10h	Резерв
0x01d0 0x01d6	UINT16/ UINT32	03h,06h,10h	Настройки датчика 29
0x01d7 0x01df		03h,06h,10h	Резерв
0x01e0 0x01e6	UINT16/ UINT32	03h,06h,10h	Настройки датчика 30
0x01e7 0x01ef		03h,06h,10h	Резерв
0x01f0 0x01f6	UINT16/ UINT32	03h,06h,10h	Настройки датчика 31
0x01f7 0x01ff		03h,06h,10h	Резерв
0x0200 0x0206	UINT16/ UINT32	03h,06h,10h	Настройки датчика 32
0x0207 0x020f		03h,06h,10h	Резерв
0x0210 0x0216	UINT16/ UINT32	03h,06h,10h	Настройки датчика 33
0x0217 0x021f		03h,06h,10h	Резерв
0x0220 0x0226	UINT16/ UINT32	03h,06h,10h	Настройки датчика 34
0x0227 0x022f		03h,06h,10h	Резерв
0x0230 0x0236	UINT16/ UINT32	03h,06h,10h	Настройки датчика 35
0x0237 0x023f		03h,06h,10h	Резерв
0x0240 0x0246	UINT16/ UINT32	03h,06h,10h	Настройки датчика 36
0x0247 0x024f		03h,06h,10h	Резерв
0x0250	UINT16	03h,06h,10h	Настройки сигнального реле 1 Режим работы О— реле не используется, 1— сигнализация исправности канала связи, 2— Температурный порог 1, 3— Температурный порог 2

			Настройки сигнального реле 1
0x0251	UINT16	03h,06h,10h	Логика работы
		,,	0 — негативная, 1 —позитивная
	_		Настройки сигнального реле 1
0x0252	UINT16	03h,06h,10h	Задержка включения в секундах[0-255]
0x0253	UINT16	03h,06h,10h	Настройки сигнального реле 1
0x0254		,,	Задержка отключения в секундах[0-255]
UXUZ54		03h,06h,10h	Резерв
0x025f		, ,	·
0x0260	LUNTAC	021- 061- 401-	
 0x0263	UINT16	03h,06h,10h	Настройки сигнального реле 2
0x0264			
		03h,06h,10h	Резерв
0x026f 0x0270			
	UINT16	03h,06h,10h	Настройки сигнального реле 3
0x0273		,,,,,,	
0x0274			
 0x027f		03h,06h,10h	Резерв
0,0271			Статус сигнальных реле
0x0280	UINT16	03h	Бит 0 –состояние реле 1 [0 - выкл, 1 - вкл]
0,0200	Onvito	0311	Бит 1 -состояние реле 2 [0 - выкл, 1 - вкл]
			Бит 2-состояние реле 3 [0 - выкл, 1 - вкл]
0x0300	UINT16	03h	Датчик 1, температура в градусах Цельсия [0-150]
0x0301	UINT16	03h	Датчик 2, температура
0x0302	UINT16	03h	Датчик 3, температура
0x0303	UINT16	03h	Датчик 4, температура
0x0304	UINT16	03h	Датчик 5, температура
0x0305	UINT16	03h	Датчик 6, температура
0x0306	UINT16	03h	Датчик 7, температура
0x0307	UINT16	03h	Датчик 8, температура
0x0308	UINT16	03h	Датчик 9, температура
0x0309	UINT16	03h	Датчик 10, температура
0x030a	UINT16	03h	Датчик 11, температура
0x030b	UINT16	03h	Датчик 12, температура
0x030c	UINT16	03h	Датчик 13, температура
0x030d	UINT16	03h	Датчик 14, температура
0x030e	UINT16	03h	Датчик 15, температура
0x030f	UINT16	03h	Датчик 16, температура
0x0310	UINT16	03h	Датчик 17, температура
0x0311	UINT16	03h	Датчик 18, температура
0x0312	UINT16	03h	Датчик 19, температура
0x0313	UINT16	03h	Датчик 20, температура
0x0314	UINT16	03h	Датчик 21, температура
0x0315	UINT16	03h	Датчик 22, температура
0x0316	UINT16	03h	Датчик 23, температура
0x0317	UINT16	03h	Датчик 24, температура
0x0318	UINT16	03h	Датчик 25, температура
0x0319	UINT16	03h	Датчик 26, температура
0x0313	UINT16	03h	Датчик 27, температура
0x031a	UINT16	03h	Датчик 28, температура
0x031b	UINT16	03h	
OXO210	OHALID	USII	Датчик 29, температура

	ı		
0x031d	UINT16	03h	Датчик 30, температура
0x031e	UINT16	03h	Датчик 31, температура
0x031f	UINT16	03h	Датчик 32, температура
0x0320	UINT16	03h	Датчик 33, температура
0x0321	UINT16	03h	Датчик 34, температура
0x0322	UINT16	03h	Датчик 35, температура
0x0323	UINT16	03h	Датчик 36, температура
0x0324	UINT16	03h	Датчик 1, статус 0 — в эфире и нет превышения порогов, 1— в эфире и превышен порог 1, 2 — в эфире и превышен порог 2, 10 — нет питания, 20 — неисправен, 30— не определен 40 - не зарегистрирован
0x0325	UINT16	03h	Датчик 2, статус
0x0326	UINT16	03h	Датчик 3, статус
0x0327	UINT16	03h	Датчик 4, статус
0x0328	UINT16	03h	Датчик 5, статус
0x0329	UINT16	03h	Датчик 6, статус
0x032a	UINT16	03h	Датчик 7, статус
0x032b	UINT16	03h	Датчик 8, статус
0x032c	UINT16	03h	Датчик 9, статус
0x032d	UINT16	03h	Датчик 10, статус
0x032e	UINT16	03h	Датчик 11, статус
0x032f	UINT16	03h	Датчик 12, статус
0x0330	UINT16	03h	Датчик 13, статус
0x0331	UINT16	03h	Датчик 14, статус
0x0332	UINT16	03h	Датчик 15, статус
0x0333	UINT16	03h	Датчик 16, статус
0x0334	UINT16	03h	Датчик 17, статус
0x0335	UINT16	03h	Датчик 18, статус
0x0336	UINT16	03h	Датчик 19, статус
0x0337	UINT16	03h	Датчик 20, статус
0x0338	UINT16	03h	Датчик 21, статус
0x0339	UINT16	03h	Датчик 22, статус
0x033a	UINT16	03h	Датчик 23, статус
0x033b	UINT16	03h	Датчик 24, статус
0x033c	UINT16	03h	Датчик 25, статус
0x033d	UINT16	03h	Датчик 26, статус
0x033e	UINT16	03h	Датчик 27, статус
0x033f	UINT16	03h	Датчик 28, статус
0x0340	UINT16	03h	Датчик 29, статус
0x0341	UINT16	03h	Датчик 30, статус
0x0342	UINT16	03h	Датчик 31, статус
0x0343	UINT16	03h	Датчик 32, статус
0x0344	UINT16	03h	Датчик 33, статус
0x0345	UINT16	03h	Датчик 34, статус
0x0346	UINT16	03h	Датчик 35, статус
0x0347	UINT16	03h	Датчик 36, статус
	1		

	1	I	
0x0348	UINT16	03h	Датчик 1, время, прошедшее с момента последнего сеанса связи [0-60]
0x0349	UINT16	03h	Датчик 2, время
0x034a	UINT16	03h	Датчик 3, время
0x034b	UINT16	03h	Датчик 4, время
0x034c	UINT16	03h	Датчик 5, время
0x034d	UINT16	03h	Датчик 6, время
0x034e	UINT16	03h	Датчик 7, время
0x034f	UINT16	03h	Датчик 8, время
0x0350	UINT16	03h	Датчик 9, время
0x0351	UINT16	03h	Датчик 10, время
0x0352	UINT16	03h	Датчик 11, время
0x0353	UINT16	03h	Датчик 12, время
0x0354	UINT16	03h	Датчик 13, время
0x0355	UINT16	03h	Датчик 14, время
0x0356	UINT16	03h	Датчик 15, время
0x0357	UINT16	03h	Датчик 16, время
0x0358	UINT16	03h	Датчик 17, время
0x0359	UINT16	03h	Датчик 18, время
0x035a	UINT16	03h	Датчик 19, время
0x035b	UINT16	03h	Датчик 20, время
0x035c	UINT16	03h	Датчик 21, время
0x035d	UINT16	03h	Датчик 22, время
0x035e	UINT16	03h	Датчик 23, время
0x035f	UINT16	03h	Датчик 24, время
0x0360	UINT16	03h	Датчик 25, время
0x0361	UINT16	03h	Датчик 26, время
0x0362	UINT16	03h	Датчик 27, время
0x0363	UINT16	03h	Датчик 28, время
0x0364	UINT16	03h	Датчик 29, время
0x0365	UINT16	03h	Датчик 30, время
0x0366	UINT16	03h	Датчик 31, время
0x0367	UINT16	03h	Датчик 32, время
0x0368	UINT16	03h	Датчик 33, время
0x0369	UINT16	03h	Датчик 34, время
0x036a	UINT16	03h	Датчик 35, время
0x036b	UINT16	03h	Датчик 36, время
0x0400	UINT16	02h	Тип устройства:
UXU4UU		03h	0x0C36 — контроллер STC36
0x0401	UINT16	03h	Версия МПО (D1.D2, где D1 — старший байт, D2 — младший байт)
0x0402	UINT16	03h	Резерв
0x0403	UINT16	03h	Версия аппаратной части контроллера (D1.D2, где D1 — старший байт, D2 — младший байт)
0x0600			Тэг датчика 1 – 28 символов (14 регистров), расположение в регистре:
 0x060d	2xCHAR	03h,06h,10h	старший байт — первый символ, младший байт — второй символ
0x060a			
	2xCHAR	03h,06h,10h	Тэг датчика 2
0x061b			
0x061c 	2xCHAR	03h,06h,10h	Тэг датчика 3
0x0629		3311,0311,1011	
0x062a			
 0x0637	2xCHAR	03h,06h,10h	Тэг датчика 4
0,0037			

0x0638 0x0645	2xCHAR	03h,06h,10h	Тэг датчика 5
0x0646 0x0653	2xCHAR	03h,06h,10h	Тэг датчика 6
0x0654 0x0661	2xCHAR	03h,06h,10h	Тэг датчика 7
0x0662 0x066f	2xCHAR	03h,06h,10h	Тэг датчика 8
0x0670 0x067d	2xCHAR	03h,06h,10h	Тэг датчика 9
0x067e 0x068b	2xCHAR	03h,06h,10h	Тэг датчика 10
0x068c 0x0699	2xCHAR	03h,06h,10h	Тэг датчика 11
0x069a 0x06a7	2xCHAR	03h,06h,10h	Тэг датчика 12
0x06a8 0x06b5	2xCHAR	03h,06h,10h	Тэг датчика 13
0x06b6 0x06c3	2xCHAR	03h,06h,10h	Тэг датчика 14
0x06c4 0x06d1	2xCHAR	03h,06h,10h	Тэг датчика 15
0x06d2 0x06df	2xCHAR	03h,06h,10h	Тэг датчика 16
0x06e0 0x06ed	2xCHAR	03h,06h,10h	Тэг датчика 17
0x06ee 0x06fb	2xCHAR	03h,06h,10h	Тэг датчика 18
0x06fc 0x0709	2xCHAR	03h,06h,10h	Тэг датчика 19
0x070a 0x0717	2xCHAR	03h,06h,10h	Тэг датчика 20
0x0718 0x0725	2xCHAR	03h,06h,10h	Тэг датчика 21
0x0726 0x0733	2xCHAR	03h,06h,10h	Тэг датчика 22
0x0734 0x0741	2xCHAR	03h,06h,10h	Тэг датчика 23
0x0742 0x074f	2xCHAR	03h,06h,10h	Тэг датчика 24
0x0750 0x075d	2xCHAR	03h,06h,10h	Тэг датчика 25
0x075e 0x076b	2xCHAR	03h,06h,10h	Тэг датчика 26

		I	
0x076c 0x0779	2xCHAR	03h,06h,10h	Тэг датчика 27
0x077a 0x0787	2xCHAR	03h,06h,10h	Тэг датчика 28
0x0788 0x0795	2xCHAR	03h,06h,10h	Тэг датчика 29
0x0796 0x07a3	2xCHAR	03h,06h,10h	Тэг датчика 30
0x07a4 0x07b1	2xCHAR	03h,06h,10h	Тэг датчика 31
0x07b2 0x07bf	2xCHAR	03h,06h,10h	Тэг датчика 32
0x07c0 0x07cd	2xCHAR	03h,06h,10h	Тэг датчика 33
0x07ce 0x07db	2xCHAR	03h,06h,10h	Тэг датчика 34
0x07dc 0x07e9	2xCHAR	03h,06h,10h	Тэг датчика 35
0x07ea 0x07f7	2xCHAR	03h,06h,10h	Тэг датчика 36